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Anomaly Detection through Vision-Language Models

Abstract

Artificial Intelligence is a field of computer science interested in creating systems ca-
pable of simulating behaviors typical to human intelligence: learning, generalization, un-
derstanding. Computer vision is a field of AI interested in using these techniques to
interpret and understand the visual world, where models are trained with examples of
images to be able to learn to detect objects and people, classify and segment images,
generate new images, etc. A problem arrives when there are not many examples available
of a certain anomalous category for us to train our model, detecting these anomalies is
an important problem with many real world applications, like detecting animals on roads
for autonomous vehicles, surveillance and security, we call this more generally the domain
of out-of-distribution detection. The advances of computer power have allowed for more
complex models to be developed, and more recently the field of NLP (Natural Language
Processing) is intersecting more and more with computer vision, allowing the computer
to learn from both text and image and thus have a more robust, general and deep under-
standing of scenes, objects, meaning and relationship. During this study we focused on
applying vision-language models to the problem of detecting rare objects on image scenes.

Résumé
L’intelligence artificielle est un domaine de l’informatique qui s’intéresse à la création

de systèmes capables de simuler des comportements propres à l’intelligence humaine :
apprentissage, généralisation, compréhension. La vision par ordinateur est un domaine
de l’IA qui s’intéresse à l’utilisation de ces techniques pour interpréter et comprendre le
monde visuel, les modèles sont entraînés avec des exemples d’images pour pouvoir ap-
prendre à détecter des objets et des personnes, classer et segmenter des images, générer
de nouvelles images, etc. Un problème survient lorsqu’il n’y a pas beaucoup d’exemples
disponibles d’une certaine catégorie anormale pour que nous entraîner notre modèle, la
détection de ces anomalies est un problème important avec de nombreuses applications du
monde réel, comme la détection d’animaux sur les routes pour les véhicules autonomes, la
surveillance et la sécurité, nous appelons cela plus généralement le domaine de la détection
hors distribution. Les progrès de la puissance informatique ont permis de développer des
modèles plus complexes, et plus récemment, le domaine du NLP (Natural Language Pro-
cessing) se croise de plus en plus avec la vision par ordinateur, permettant à l’ordinateur
d’apprendre à la fois du texte et de l’image et ainsi d’avoir un compréhension plus robuste,
générale et profonde des scènes, des objets, de la signification et des relations. Au cours
de cette étude, nous nous sommes concentrés sur l’application de modèles de langage de
vision au problème de la détection d’objets rares sur des scènes d’images.
Mots-clés: Vision par ordinateur, détection hors distribution, modèles de vision-language.
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Part I

Introduction

A high-performance machine learning model depends on the architecture of the model
itself and on the data it is trained on. Every architecture brings in a certain inductive
bias, a set of assumptions about the relationship between inputs and outputs that makes
the algorithm learn one pattern instead of another pattern. If a model has a smaller
inductive bias it is able to generalize to a larger range of contexts but it also needs more
data to be trained on and to learn. One of the reasons the transformer architecture [11]
is dominating so many domains of artificial intelligence is that it has less inductive bias
compared to Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN),
which were conceived to be suited to image and sequential respectively.

While this may seem like a good thing it imposes the challenge of finding good, reliable
data that can be used to train the model to produce accurate predictions. However, real
world data is often messy and full of issues, annotation errors exist even in widely used
image datasets [12] and can have a huge impact on performance (“Garbage in, garbage
out”) [13]. The costs of labeling, re-labeling and verification is sometimes boundless, and
astronomical.

Problems with the dataset can be particularly harmful when working with incidents
that do not have many occurrences in the data. These incidents can be rare objects,
e.g. fire, fire spark, litters, etc. They can be rare events (someone running in a shopping
mall) or objects abnormal for a given context (unattended luggage). Identifying these
anomalies might be critical and they might be specially difficult to identify due to the
lack of training data which allows the model to generalize and learn to identify them.

This type of problem is referred to as Out-Of-Distribution (OOD) Detection: given a
known dataset, the goal is to determine if a new sample belongs to the same distribution
or is in some way atypical. This is a large family of problems and so it is necessary to
conduct an overview of the state-of-the-art on the subject and frame the problematic of
this study among the existing ones on the bibliography. These problems live under what
is called the open-world assumption. Traditionally Machine Learning (ML) tasks focus
on closed-world settings, where it is assumed complete knowledge of the system and it
is stated that test instances can only be from the distributions seen during training, this
is in opposition to the open-world setting where instances can come from outside of the
training distribution, this is illustrated in fig. I.1.
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Figure I.1: Closed-world vs Open-world assumption

More recently there has been an increase in interest in multi-modal models that com-
bine vision and language modalities. Being trained on image and text, these models have
shown superior performance in challenging tasks such as visual question-answering, text-
guided image generation and manipulation and image captioning [14]. They are often
trained with millions or billions of image-text pairs and so show superior robustness and
can be better transferred to real life applications including OOD detection [15].

One recent setting in the domain of VLM is that of Open Vocabulary Object Detection
(OVD), where a detector is trained to identify and categorize not only a well known list of
classes, but unseen objects defined by an unbounded vocabulary (i.e. image I.2). These
models usually consist of taking an image encoder that was pre-trained in multimodal
fashion with a text encoder and attach to it a detector with a modified head that contains
an attention mechanism. In this study, we approach the task of Out-of-Distribution
detection through the setting of open-vocabulary detection, we propose a novel YOLO-
based model adapted for industrial applications (such as real-time deployment) using
encoders pre-trained multimodally from text and image.

Figure I.2: Open Vocabulary Object Detection (OVD) inference example. Image from
Arandjelović et al. [2]

Context of Internship

This study was done during my internship at XXII Group, which is a french scale-up
computer vision software publisher company based in Puteaux, France. XXII built a
platform capable of performing Real-Time video analysis from CCTV cameras, having
many applications:

10 Pietro TANURE ONNIS / XXII Group
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PART I. INTRODUCTION

• Security purposes: detecting abnormal events, alerting in real-time

• Logistical analysis: object counting, waiting-time measurement

During my internship, I worked in the R&D department of the company responsi-
ble for doing research and developing new models, methods, and solutions to address
the company’s challenges. In specific the company observed that some rare objects like
fire, unattended luggage and litter, are not detected with the same performance as more
common classes like person, car, bike, etc. The possibility of detecting these unknown
incidents could have multiple applications in deployment and data collection for further
model training. The company defined the following prospectives for this internship:

1. Reduction of the cost in collecting and labeling data of rare classes

2. Real-time anomaly detection on the platform

Pietro TANURE ONNIS / XXII Group
Non-confidential report and publishable on Internet
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Part II

Related Work

II.1 Generalized Out-of-Distribution Detection
Anomalies are events that somehow deviate from the normality, “normality” here is

defined in a statistical sense as being instances or collections of data that rarely occur in
the dataset and whose features differ significantly from most of the data, it is of interest
to be able to identify these anomalies, whether they were seen before during training or
not, and sometimes even classify them among new classes.

There are many practical interests in computer vision in being able to identify OOD
instances, for exampĺe in medical imaging it can used be to identify tumors, in autonomous
driving it can be used to identify strange objects or animals on the road (Fig. II.1), in
security and surveillance camera systems it can identify potential threats in public or
private spaces, etc.

Figure II.1: Out-of-Distribution Detection inference example

This constitutes a whole family of different problems which include Anomaly Detec-
tion (AD), Novelty Detection (ND), One-Class Classification (OCC), Out-Of-Distribution
(OOD) Detection, Open-Set Recognition (OSR), Novel Category Discovery (NCD), Out-
lier Detection [3]. The model is trained with a set of known classes in a labeled dataset
Dl and has to assign the labels to possibly seen and unseen classes in a unlabeled dataset
Du during inference. More generally the problem can be formalized as: let X be the input
(sensory) space and Y be the label (semantic) space, given a dataset D which comprises
a labeled part Dl = {(xl

i, yl
i)}N

i=1 ∈ X × Y l with a Cl number of classes and an unlabeled
part Du = {(xu

i , yu
i )}M

i=1 ∈ X × Yu with a Cu number of classes, such that Y l ̸= Yu,
the model does not have access to the labels in Du and needs to assign a label Y u ∈ Yu

to Xu ∈ X . Each problem can be seen as a subset of this more general problem. We
summarize the notations on the table II.1.

12 Pietro TANURE ONNIS / XXII Group
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Notations Meaning
X the feature space in R
X l/Xu the data samples of the labeled/unlabeled sets.
P (X) the marginal distribution of X
Y l/Yu the target spaces in RCl

/RCu

C l/Cu the number of classes in the labeled/unlabeled sets.
Y l/Y u the corresponding class labels of X l/Xu

Dl/Du the labeled/unlabeled data domains, composed of a set of
samples X and their corresponding class labels Y

N/M the number of samples in Dl/Du

Table II.1: Notations used in generalized Out-of-Distribution detection and their meanings
(we keep the notation of Troisemaine et al. [1])

The literature often uses different terms interchangeably, for clarity the conventions
defined in Yang et al. [3] are used, who did a comprehensive survey for Generalized OOD
Detection and proposed a unified framework to view closely related tasks on the literature
based on 4 taxonomies seen on figure II.2.

Figure II.2: Taxonomy of generalized OOD detection framework, illustrated by classifica-
tion tasks. Image by: Yang et al. [3]

1. Distribution shift: the task focuses on detecting covariate shift (P (X l) ̸= P (Xu))
or semantic shift (P (Y l) ̸= P (Y u))

2. In-Distribution classes: the In-Distribution (ID) data contains one single class
(Cl = 1) or multiple classes (Cl > 1).

3. ID Classification: Whether the task requires classifying the ID data

4. Transductive or Inductive: Transductive task requires all observations at once;
inductive tasks follow the train-test scheme with the Dl and Du respectively.

Pietro TANURE ONNIS / XXII Group
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II.1.1 Anomaly and Novelty Detection
An “anomaly” is something that exhibits a distribution shift. It can be either from

a covariate shift (P (X l) ̸= P (Xu)) or a semantic shift (P (Y l) ̸= P (Y u)). A picture of
a cat among pictures of dogs is a semantic shift and a drawing of a dog among pictures
of real dogs is a covariate shift. Covariate shifts are commonly used to evaluate the
generalization and robustness of a model, i.e. adversarial examples, domain shifts and
style changes. Because a shift in P (Y ) also triggers a shift in P (X) in practice most
methods for identifying sensory and semantic shift are mutually inclusive, with some
approaches being specialized in one of the two sub-tasks [3].

Different from other frameworks like Open-Set Recognition and Out-Of-Distribution
Detection, the setting of Anomaly Detection (AD) treats In-Distribution (ID) samples as
one thing even if they belong to many different classes (“person”, “dog”, “cat”...), it is
not interested in doing classification of the ID samples, only assigning them either the
label of “ID” or “ OOD”. Main applications of sensory AD are industrial inspection, image
forensis, adversarial defense, forgery recognition of artworks. And for semantic AD it can
be used for filtering data and for video surveillance.

Since anomalies are usually rare and examples are available in small quantities or not
at all available, approaches for this setting are usually unsupervised or semi-supervised.
Common approaches for AD models are: density-based where OOD test samples are
rejected if they deviate from the main distribution [16]; reconstruction-based, where an
encoder-decoder architecture is trained to accurately reconstruct the ID samples [17], this
way an image of an OOD instance will have a bad reconstruction and can be identified;
one-class classification OCC, mainly through the construction of a decision boundary
between the ID and OOD samples [18].

Novelty Detection is similar to AD but is only interested in semantic shift, the main
difference is a motivation one, ND sees novel classes not as erroneous or fraudulent, but
as possible learning resources for a model that cannot possibly know all the classes it is
shown. ND is also supposed to be fully unsupervised, while AD can have some abnormal
training samples. Main applications of ND include incremental learning and dataset
augmentation.

II.1.2 Open-Set Recognition and Out-Of-Distribution Detection
Open-Set Recognition (OSR) is interested in making classifiers robust and general

enough to deal with real-world problems like incomplete information, limited data re-
sources and imbalanced distribution. The task is to both: 1) identify samples from the
trained classes (so called “known known classes”); 2) reject samples from never seen classes
(“unknown unknown classes”). An example of OSR problem can be a face identification
system where the model has to both identify each sample as being from a class (a specific
individual) but also correctly classify any person it has not seen before as unknown.

OSR is closely related with other domains such as such Zero/few-shot learning, clas-
sification with reject option and Open-World Learning [19]. In Zero-shot classification
the model is trained to predict classes with labeled positive training examples seen during
training (known known classes) and also classes that only have side information (unknown
known classes). An example would be training an image classifier with images of farm
animals but also feeding the model texts about wild animals. This way by combining
both its visual knowledge of a farm horse and a text that says “a zebra is like a horse
with black and white stripes” the model is able to identify a zebra during test although

14 Pietro TANURE ONNIS / XXII Group
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never having seen an image of one. Few-shot would be the same but the model instead
has a few positively labeled image examples of the “unknown known classes” (like the
zebra) on top of its images of “known known classes”. Open-World learning is an evolu-
tion of OSR where the model is tasked with doing everything an OSR classifier does and
also perform incremental learning to update the model continually as unknown unknown
classes appear, without forgetting the known known classes.

Unlike AD and ND, OSR has the additional objective of identifying ID classes and so
the majority of its models use a classification-based approach [20]; and some use a distance-
based approach, where metric learning and contrastive learning are used to construct a
latent space where samples from the same classes are clustered together while remaining
separate from other classes [21][17].

Applications of OSR are in deploying real-world image classifiers in general, which can
accurately identify the trained classes while also identifying OOD classes as they almost
always exist in the real world.

Out-Of-Distribution (OOD) is very similar to OSR, difference is that OSR is interested
in identifying semantic shift coming from the same dataset, while OOD methods normally
consider ID as being classes in a given dataset and OOD as being samples drawn from a
totally different dataset with non-overlapping classes. For example, training a model to
identify ImageNet classes while rejecting samples from the MNIST dataset.

Like OSR, the majority of approaches are classification-based [22] [23] [24]. The key
philosophical difference between OOD and OSR is that OOD is trained to identify samples
from which the model does not want to or cannot generalize [3]. In this sense OOD covers
a broader scope of tasks and its applications are usually in safety-critical situations, such
as autonomous driving.

II.1.3 Outlier Detection
Outlier Detection is different from the previously discussed methods because there is no

train/test split, the dataset is processed all at once, making the approach transductive.
Models are usually: density-based, interested in modeling the probability distribution
from the the data samples; distance-based performing metric-learning like techniques to
cluster the samples from a specific class together [25]. OD is a vast domain, and its
applications range from data mining, data pre-processing, video surveillance and network
safety. It’s important to note that the term outlier is a lot of times used interchangeably
with anomaly and novelty so it’s important to keep in mind the main frameworks and the
task discussed.

II.1.4 Generalized Category Discovery
Generalized Category Discovery (GCD) is also a transductive approach where the

model receives during training both a labeled dataset of known classes Dl = {(xl
i, yl

i)}N
i=1 ∈

X ×Y l with a Cl number of classes and an unlabeled dataset Du = {(xu
i )}M

i=1 ∈ X with Cu

number of classes and is asked to label the instances in Du. Differently from the previously
discussed problems, here the novel classes are not necessarily rare, and the dataset can
be even overwhelmed by all these different classes. This setting was formalized by Vaze
et al. [26] although the same setting had been explored before by the name of Open-World
Semi-Supervised Learning [27]. GCD has the same setting of Novel Category Discovery
but the later imposes a restriction of no intersection between Du and Dl. This setting
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relative to the previously discussed settings is represented in fig II.3.

Figure II.3: Simplified diagram of main OOD detection frameworks

This setting has gained a lot a notoriety as well with recent models using distance-based
approaches with contrastive learning [26], prototype learning [28] and prompt learning
[29]. The domain is still a new one and so to this point the GCD and NCD models are
only tested on relatively simple object oriented datasets, like CIFAR10, CIFAR100 and
ImageNet, the models were not yet applied on scene-oriented datasets like MSCOCO,
LVIS, etc. For this reason the domain is still not at the point of real world deployment
where there are many classes on the same image (a lot of these classes not even annotated
on the dataset), many different scene contexts and etc.

II.1.5 Summary
The domain of Generalized Out-Of-Distribution (OOD) Detection for computer vision

is vast, as seen here there are a lot of frameworks, terminologies, and approaches, each
one with its drawbacks and advantages. To recall the main ideas that were discussed, we
provide a summary of the domains of OOD Detection adressed at the table II.2.

Need to ... AD ND OSR OOD OD NCD GCD
recognize OOD instances ✓ ✓ ✓ ✓ ✓ ✗ ✓

have OOD samples during training ✓/✗ ✗ ✗ ✓ ✓ ✓ ✓

accurately classify known samples ✗ ✗ ✓ ✓ ✗ ✗ ✓

discover the new classes ✗ ✗ ✗ ✗ ✗ ✓ ✓

Table II.2: Summary of the domains in Generalized OOD Detection, including:
Anomaly Detection (AD), Novelty Detection (ND), Open-Set Recognition (OSR), Out-
Of-Distribution (OOD), Outlier Detection (OD), Novel Category Discovery (NCD), Gen-
eralized Category Discovery (GCD). Table from Troisemaine et al. [1]

AD and ND methods have been studied for a long time and so their models can be
used on a variety of context, datasets and tasks, but they are not able to classify ID
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classes. Since the platform developed by XXII Group is one capable of real-time object
recognition, it works with a wide range of classes, scenes and backgrounds, so it is of
interest to be able to classify existing ID classes. We turn our interest towards OOD and
OSR models, which have good performance on scene oriented dataset like MSCOCO, they
can classify ID classes but not distinguish between possible OOD classes, a feature that
could be very desirable for annotation and recognition. The more complex tasks of NCD
and GCD allow to both identify existing objects and classify new ones, but the domain
is still quite new, having less than 2 years in the case of NCD and less than 1 year in the
case of GCD, so the existing models have been tested for more object oriented datasets
like CIFAR10, CIFAR100 and ImageNet, not yet being applied to complex scene oriented
datasets like MSCOCO and LVIS (closer to the datasets used by XXII).

For these reasons, but mostly because of sheer curiosity about such a rapidly develop-
ing field we turned our interest towards Vision-Language Models (VLM), these models are
trained on billions and millions of images, they can offer robustness and generalization,
being able to solve a wide range of tasks on different domains.

II.2 Vision-Language Models
Visual recognition tasks like image classification, object recognition and semantic seg-

mentation have posed a persistent challenge on the field of computer vision. The advent of
deep learning brought great advances in the field, the focus was on developing Deep Neural
Network (DNN) with architectures that imposed the appropriate inductive bias to solve
the task. CNNs for example were inspired by the visual cortex in the human brain, where
neurons respond to specific regions or receptive fields in the visual space, effectively cap-
turing spatial relationships and patterns in images. The deep learning paradigm allowed
models to be trained in supervised manner to many different tasks, but it comes with two
drawbacks: the slow convergence of the DNN under the classical setup of “trained from
scratch” and the collection of crowd-labeled and task-specific data to train these models
which is very time-consuming [30].

Recently a new paradigm of “pre-training and fine-tuning” has shown to be very
effective. Pre-training allows to construct a latent space dense enough to do transfer
learning to many tasks. A model can be pre-trained on classification tasks on a wide
enough dataset like ImageNet, it can also be pre-trained in self-supervised manner using
data augmentation and contrastive learning to obtain a metric-like embedding space, or
in the case of VLM models, in multimodal fashion harnessing text and image. The pre-
trained model can be subsequently fine-tuned to many possible downstream tasks with
great computational efficiency as many models don’t even require fine-tuning to have good
performance, being deployed directly in zero-shot manner.

In this context, Vision-language Models (VLM) are models that learn from both image
and text, constructing a solid understanding of language, syntax, semantics, recognition
and scene disposition which allows them to be capable of solving a wide range of tasks (fig
II.4). These tasks can be multimodal, involving image and text, or unimodal (text-only
/ image-only).

II.2.1 Timeline
This domain has taken a lot of inspiration from the domain of Natural Language

Processing to define its training objectives and architecture. After the original work by
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Figure II.4: Task examples for VLM models. From left to write: Visual Question Answering (VQA),
Visual Captioning (VC), Semantic Segmentation (SS), Grounding Referring Expressions (GRE)

Vaswani et al. [11] (2017) that introduced the transformer, studies began to try to apply
it on images as well to create VLMs. We can’t possibly offer a complete view of this field,
but we offer a brief timeline of the main models for image-to-text tasks.

Li et al. [31] (2019) proposed VilBERT, it uses the encoder only transformer ar-
chitecture BERT [32] to teach a model region-to-phrase grounding: that is the task of
understanding the relationship between different parts of the images and words in the
text. The transformer would receive a sequence of word embeddings alongside embed-
dings of regions of interest from images that were encoded by a CNN. Using this sequence
the model is trained on a scene oriented dataset with two objectives: 1) Masked lan-
guage modeling, in which some elements of text input are masked and must be predicted,
while the vectors corresponding to image regions are not masked; 2) Image-text match-
ing, where the model is provided a text segment consisting of two captions, one of them
always corresponds to the image, while the other one has a 50% chance of corresponding
to the image and 50% of being a randomly drawn caption, the model is then trained to
distinguish these two situations.

VisualBERT (Lu et al. [4], 2019), had a similar approach of training a BERT archi-
tecture with text embeddings and embedding of regions of interest encoded by a CNN.
It is trained on the Conceptual Captions dataset with 3.3M image-caption pairs, using
two objectives (fig. II.5): 1) Masked multi-modal learning, in which elements of both
the text and image input are masked and the model must predict the missing words and
the semantic classes of the masked image patches; 2) Image-text matching, where the
model is given an image-text pair and must decide whether they are aligned. In terms of
architecture differently from VisualBERT it has a dual encoder architecture with separate
transformers for text and image. It also introduces a novel co-attention mechanism, where
the key and values computed by each of these two transformers is passed as input to the
other transformer’s multi-headed attention block, this way the model learn conjointly from
image and text information. The resulting model is capable of many vision-and-language
tasks: VQA, VCR, GRE, CBIR.

Figure II.5: VilBERT training tasks visualized. Image by Lu et al. [4]
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Dosovitskiy et al. [5] (2020) decided to apply the transformer directly on the image in-
stead on pre-calculated CNN embeddings. They proposed the Vision Transformer (ViT),
where the image is divided into patches and each patch is assigned a position encoding
corresponding to its position on the image and are then linearly embedded, the resulting
sequence is then fed through the standard Transformer encoder, as represented in figure
II.6). The ViT showed that a single architecture, the transformer, could be used to treat
both text and images directly. This opened the door for the development of a wide range
of VLM with a wide range of learning objectives, architectures and capabilities over the
following years.

Figure II.6: Vision Transformer. Image by Dosovitskiy et al. [5]

Arguably the most influential article for this study is the work by Radford et al.
[6](2021) which introduces the CLIP model, which trains a vision and a text encoder
contrastively on image-caption pairs in order to construct a shared embedding space of the
two encoders. CLIP’s architecture is based on the dual encoder contrastive architecture
proposed by Zhang et al. [33]. The affinity between an image and a text is given by
the dot-product between the embeddings of the image and the text. During training the
model is given a batch of image-caption pairs and asked to match each image with its
correct caption. During inference The model is given a set of N text prompts of the
type “A photo of a object.”, each containing different category names, these prompts
are then passed through the pre-trained text encoder to generate N text embeddings.
These text embeddings are projected on the image embedding, and the class of the text
prompt with the highest score is chosen as the category (image II.7). Training CLIP
requires an immense amount of data, 400 million image-text pair were gathered from
public available sources on the internet, the resulting dataset was never made available
after. A transformer architecture was used for the text encoder and both CNN and
transformers were trained as image encoder, with varying sizes: ResNet-50, ResNet-101
[34], three EfficientNet-style models and three Vision Transformers (ViT-B/32, ViT-B/16,
ViT-L/14).
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Figure II.7: Summary of CLIP training and inference. Image by Radford et al. [6]

Jia et al. [35](2021) also published a paper at the same time which used the same ar-
chitecture and training, calling it the ALIGN model, they used an even bigger dataset of
1.8 billion images gathered from the internet following filtering procedures by Conceptual
Captions [36].

Simple Visual Language Model (SimVLM) by Wang et al. [37](2021) is based on the
basic Prefix Language Modeling objective from NLP training and has only one training
objective. A transformer encoder receives both the image patches and the first half of a
sentence and is asked to generate the second half of the sentence. The model adopts this
simple architecture and training objective but is trained on the dataset used by ALIGN
(1.8B image-text pairs) + the C4(text only) dataset. This massive amount of data allows
the model to learn and generalize.

Differently from the previous models that go for a relatively simple training and a lot
of data, Singh et al. [14] proposed FLAVA which uses 5 different training objectives and
3 encoders but manages to obtain comparable results with only 70M image and text pairs
openly available online (compared to CLIP’s 400M, ALIGN’s 1.8B, SimVLM’s 1.8B+).
The model performs both unimodal tasks (text-only /image-only) and multimodal tasks,
being more universal than previous approaches. To do this it uses an image encoder,
a text encoder and a multimodal encoder, it is trained with 5 objectives: Masked lan-
guage modeling (MLM), Masked Image Modeling (MIM), Masked Multimodal Modeling
(MMM), Image-Text Matching (ITM), Global Contrastive (GC).

II.2.2 Summary
We make a summary of the different aspects of a VLM model in order to better

synthesize the previous section:

1. Feature extraction: "CNN vs ViT vs Object-Detection"-based (whether you en-
code the whole image using a CNN or a ViT to obtain a feature vector, or use
a detector to extract a RoI from the image containing a single object) / For the
text feature extraction there are many transformer based architectures: BERT,
RoBERTa, ALBERT, XLNet.

2. Model architecture: 1-stream vs 2-stream (whether the text and visual features
enter the same or different encoders) / Encoder-only vs encoder-decoder (the cross-
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modal representations from the encoder are directly fed into an output layer or they
go through a decoder).

3. Pre-training objectives: Contrastive; Masked Language Modelling (MLM); Masked
multi-modal modelling (MMM); Image-Text Matching (ITM); Prefix Language Mod-
eling (PLM), etc.

4. Pre-training datasets: There are many available datasets like Conceptual Cap-
tions (CC3M), CC12M, Flickr30k, Visual Genome (VG), Red Caps, YFCC100M.
Some models also used their own constructed dataset like CLIP and ALIGN.

5. Downstream tasks: Visual Question Answering (VQA); Visual Commonsense
Reasoning (VCR); Object Recognition (OR); Grounding Referring Expressions (GRE);
Category Recognition (CR); Vision-Language Retrieval (VLR); Visual Captioning
(VC); Semantic Segmentation (SS), etc.

These aspects for the previously discussed methods can be seen in table II.3.

Model Image
encoder

Text
encoder Decoder Multimodal

fusion PT Objectives PT datasets Data size

VisualBERT BERT BERT no single stream MLM, ITM COCO 113K
ViLBERT BERT BERT no dual stream MMM, ITM CC 3.3M
CLIP ViT-L/14 Transformer no dual stream VLC CLIP* 400M
ALIGN EfficientNet BERT no dual stream VLC ALIGN* 1.8B

SimVLM ResNet +
Transformer Transformer yes single stream PrefixLM ALIGN* +

C4 1.8B+

FLAVA ViT-B/16 +
UniT

ViT-B/16 +
UniT yes both

MLM, MIM,
MMM, ITM,
VLC

COCO, SBU,
LN, CP, VG,
WIT, CC12M,
RC, YFCC100M

70M

Table II.3: Summary of vision-language models discussed.

II.3 Open-Vocabulary Object Detection
A new setting that is becoming very common with the development of large-scale

contrastively pre-trained image-text models (ex. CLIP, ALIGN) is Open Vocabulary
Object Detection (OVD) [38]. It is not only interested in detecting objects from a fixed
number of classes, but also in being able to classify novel classes into a vast unrestricted
semantic space by constructing a unified vision-language model.

The majority of OVD models are based on CLIP, they use a dual encoder architecture
that was pre-trained using contrastive learning to align the feature spaces of the text and
image encoders, allowing to make a direct comparison between image and text feature
vectors by a simple scalar product. To allow for detection, the image encoder is used as
the backbone of a detector, and in the last layer of the classification head, instead of k-
way classification the head is modified so that the classification features can be projected
directly upon pre-calculated text embeddings of the classes (fig: II.8).

While zero-shot detection methods learn a limited set of base classes and struggle to
generalize to target classes, OVD models acquire a much larger vocabulary by learning
from low-cost image-caption pairs. We’ll provide a brief timeline of this field and go more
in-depth on specific models that have influenced this paper.
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Figure II.8: Standard approach of Open Vocabulary Object Detection (OVD) pre-training
and detection. Image by Arandjelović et al. [2]

II.3.1 Timeline

ViLD (Gu et al. [39] 2021) proposes to distill the image representation of a pre-trained
teacher Vision-Language Model (VLM) like CLIP, into the detector. They train a student
detector, whose embeddings of the detected regions are aligned with the text embeddings
and also the image embeddings inferred by the teacher model. DetPro (Du et al. [23]
2022) improves upon ViLD by applying the idea of prompt optimization. Since VLM are
very sensitive to the text or image prompt used [6] (i.e. using the text prompt “Photo of
a object.” and “object” give different performances, and slightly different RoI can make
the model focus on different aspects of the scene) DetPro trains the detector to optimize
the region proposal for the best classification score.

RegionCLIP (Zhong et al. [7] 2021) develops a region-text pre-training that leverages
pre-trained VLMs on image-caption data and also train the classification head using
distillation from a teacher VLM.

GLIP (Li et al. [40] 2021) uses a transformer architecture and reformulates object
detection as a phrase grounding task, pre-training the model to correctly match many
regions extracted from a single image with the text embedding corresponding to that
region’s class. It uses a variety of detection, grounding, and caption datasets for zero/few-
shot object detection and differently from the other approaches it does deep cross-modality
fusion between the text and image embeddings instead of only fusing text and image on
the last layer like CLIP.

GLIPv2 (Zhang et al. [41] 2022) then uses inter-image contrastive by extracting
regions from multiple images and introduces batch negative examples making the learning
task harder. Since it maintains batch size it’s more data efficient than GLIP.

OWL-ViT (Minderer et al. [42] 2022) finetunes an open-vocabulary detector with an
encoder pre-trained in contrastive manner in various detection/grounding datasets. To
adapt the image encoder for detection, they remove the token pooling and final projection
layer of the ViT while box coordinates are obtained by passing the token representations
through a small fully connected multi-layer neural network.

F-VLM (Kuo et al. [8] 2022) uses a frozen pre-trained VLM and trains only the
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detector’s head using an object detection dataset. It changes the detector’s head during
inference to allow for classes not seen during training. Using a frozen LM has the downside
that the vision model is “forced” into the language-model “mould”. OWL-ViT, GLIP
and GLIPv2 also train the language model (LM) with smaller learning rate to prevent
catastrophic forgetting.

UniDetector (Wang et al. [9] 2023) proposes to uses multiple dataset with heteroge-
nous label spaces to train the detector. To promote the generalization to novel categories
it does probability calibration and proposes a decoupled training that trains separetely the
class-agnostic Region Proposal Network (RPN) and the class-aware classification head.

Three-ways (Arandjelović et al. [2] 2023) proposes three methods to improve feature
alignment for OVD, being the current best performing algorithm. The first method is
to augment the text embeddings by performing dropout to calculate multiple variations
of the text embedding. Secondly the detector is modified to include gated shortcuts
which garantee vision-text feature alignment during the beginning of training. Finally a
self-training approach is used to leverage a larger corpus of image-text pairs for training.

II.3.2 RegionCLIP
Zhong et al. [7](2021) showed that while obtaining impressive performances on image

classification CLIP was not as good in classifying image regions for object detection. That
is because CLIP was trained to match an image as a whole to a text description without
relating the image regions to words on the text through grounding. RegionCLIP was
then proposed, it distill knowledge from CLIP to train a detector performing what was
called "CLIP-guided region-text alignment". The first step is to take the pre-trained CLIP
weights for the teacher image and text encoders, the second step is to choose an image-
caption dataset (like CC3M) and extract regions of interest containing objects from these
images using a detector. Key words present in the image captions are used to contruct
many different prompts using the text encoder, where each class has its own text prompt.
Then a new student image encoder is pre-trained using a contrastive loss to correctly
assign each region to its respective text prompt and also with a distillation loss to match
the cosine similarity between region-text obtained by the original CLIP teacher encoder.
This way RegionCLIP learns to assign each image region to a specific class and also learns
the dense semantic space of CLIP. Finally the third step is to take this new pre-trained
image encoder, use it as the backbone of a detector and train it on object detection
datasets like COCO or LVIS. This training can be seen in image II.9.

Figure II.9: RegionCLIP encoder pre-training and detector training. V t is the teacher
image encoder by CLIP and V is the new student encoder of RegionCLIP. Image by Zhong
et al. [7]
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RegionCLIP obtains better scores on image classification than CLIP.

II.3.3 F-VLM
Considering the high cost of pre-training, Kuo et al. [8](2022) explores the possibility

of using a frozen pre-trained VLM to construct an open-vocabulary detector. Using a
pre-trained CLIP encoder as the backbone of a Faster-RCNN detector [43] they only
train the detector’s head. The change comes in the detection scores z, normally they
are calculated by reducing the last fully connected layer to m neurons (m − 1 classes
and 1 background class) and performing a softmax operation. This approach doesn’t
support Open-vocabulary settings which require new categories to be added in test time.
So instead the last fully connected layer is replaced with text embeddings tj of base
categories , and a cosine similarity operation is done between the region embeddings ri

obtained and the text embeddings, in a sense the detector’s head is being taught to obtain
an embedding space aligned with the text embedding space. The new detection scores
are then given by equation II.1.

zi(ri) = Softmax(1
τ

[cos(ri, t1), ..., cos(ri, tm)]) (II.1)

During inference the architecture is different because now new categories come at play,
equation II.1 is applied to the region embeddings with both the old and new text embed-
dings to obtain zi. The model also takes the region bboxes proposed by the detector’s
head and performs a RoI Align operation which extracts the region corresponding to the
bbox from the last layer of the feature map encoded by the backbone, obtaining a fixed
size feature representation. This region’s feature map is then passed through the attention
pooling layer from the original pre-trained VLM to obtain a region embedding vi, this
embedding is then projected upon both text embeddings tj of the old m categories and
of the new n categories using cosine similarity and taking the softmax like in equation
II.1, obtaining wi. Finally the final score si for each region b is calculated as a geometric
mean of zi and wi. This architecture is illustrated on image II.10.

Figure II.10: F-VLM inference architecture. Image by Kuo et al. [8]

With this approach F-VLM attains competitive results with a fraction of the computa-
tion cost, since no pre-training was necessary, it also conserves the original visual-language
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features and so outperforms RegionCLIP, ViLD [23] and Detic [44] in recognizing the rare
categories in LVIS dataset.

II.3.4 UniDetector
Aiming at making a universal detector, Wang et al. [9] based their model on three

critical points: 1) it must leverage images of multiple sources and heterogeneous label
spaces for training; 2) generalizes to the open-world and keeps a balance between seen
and unseen categories by using language and vision modalities; 3) keep generalization to
novel categories through decoupled training and probability calibration.

The initial weights for the backbone to be fine-tuned are taken from the pre-trained
backbone by RegionCLIP that was trained for region-text alignment. To allow generaliza-
tion to both seen and unseen classes, a detector that proposes regions in a class-agnostic
way is chosen, in this case FasterRCNN (image II.11). Since the RPN is class agnostic but
RoI Head is not (having worse performance for novel classes), they are trained separetely
in order for the head not to bias the performance of the RPN.

Figure II.11: Illustration of class-agnostic localization network used by UniDetector. Im-
age by Wang et al. [9]

For the first point the model proposes different possibilities of model architectures to
deal with the multiple datasets and label spaces, they find that sharing the same backbone
but having a different trained head for each dataset give the best results since it promotes
better feature extraction. Finally since only In-Distribution classes are seen during train-
ing the detector is biased towards these categories and gives higher confidence scores, so
probability calibration is proposed for post-processing the predictions and balancing ID
and OOD classes.

II.3.5 Summary
The field of Open Vocabulary Object Detection (OVD) is growing rapidly, and new

approaches are being studied everyday, each with its drawbacks and advantages. One
can pre-train a model on a large image-caption dataset and use it as the backbone of a
detector [8][9][23][39][42] taking advantage of the dense feature obtained during the pre-
training (which benefits OOD detection), or to directly pre-train it on the grounding task
[7][40]. It is possible to apply either transformers-based [40][42] or CNN-based [8][9][23][39]
architectures. The backbone can also be fine-tuned for object detection [9][42] which
increases performance for ID classes but can distort the features for OOD detection. Also
training the detector in two stage can be a good alternative to decouple the problem into
a localization and a classification one, approaching it from two fronts.

Pietro TANURE ONNIS / XXII Group
Non-confidential report and publishable on Internet

25



Part III

Methodology

We now return to the real life context of XXII Group, the company observed that
some rare objects are not detected with the same performance as more common classes.
In order to train the model to identify these classes it is necessary to collect and annotate
instances of these objects, but these kind of tasks are very costly. An approach that
allows one not only to identify when something is OOD, but also classify it, might be
very desirable for annotating new data.

Through the usage of a pre-trained model we can take advantage of models trained on
much more data than we are capable of doing. Models that were pre-trained multimodally
with image and text have shown superior robutness [15] and can narrow the gap between
human and machine by allowing one to search specifically for something using a text
prompt, helping to collect relevant data. For this reasons we turn ourselves towards the
field of Open Vocabulary Object Detection that harnesses pre-trained VLM to do object
detection.

Since we want to favor anomaly detection we keep the pre-trained encoder frozen
like F-VLM, because fine-tuning it distorts the features learned during pre-training and
so makes the model underperform OOD [45]. Also considering the fact that XXII does
real time object recognition, an OVD that also prioritizes speed could also expand the
possibilities of applications to not only data mining but also to deployment. For this
reasons we choose a CNN encoder and not a transformer one, as well as a YOLO detector
- in our vocabulary, an object detector is an object detection model - which is still faster
than most other detectors while having good performance.

We summarize our reasoning and choices:

1. Pre-trained models can offer superior performance and generalization by being pre-
trained on large amounts of data

2. Open Vocabulary Object Detection (OVD) harnesses multimodally pre-trained mod-
els for object detection, allowing text to image object detection.

3. To emphasize anomaly detection we keep the pre-trained model frozen

4. To emphasize inference speed and real time detection we adopt a CNN encoder and
a YOLO model

The current models on the literature all use a two-stage detector for OVD, since they
prioritize performance and not speed. But YOLO is a single-stage detector and so we
need to adapt the standard approach illustrated in image II.8 for our study. UniDetector
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showed that a decoupled training for a two-stage detector can be beneficial in order not
to make its RoI head (which is not class agnostic) bias the RPN (which is class agnostic)
during training. Our approach is similar, we first train a YOLO detector to do class
agnostic object localization and later couple the trained model with a multi-modal head
that allows to classify the localized objects from a text prompt.

III.1 Class agnostic Object Detection
The first step is to substitute the backbone of a detector with a CNN encoder pre-

trained in contrastive fashion, and then to train this detector to do class agnostic object
detection while keeping the new backbone frozen.

The original YOLO [46] is a single-stage detector, the image passes only once through
the network and at the end a regression model proposes bounding boxes and a classification
model predicts a class corresponding to each bbox. It does this by dividing the image
into a grid, if the center of an object falls into a grid cell, that grid cell is responsible for
detecting that object. Each grid cell predicts B bounding boxes, a confidence scores that
an object is in that bbox called objectness, and C conditional class probabilities. Finally
this predictions are post-processed, the best bounding boxes are chosen and a class label
is assigned to each. We observe this framework at image III.1.

Figure III.1: YOLO model

The following sections go in detail into the implementation and training details. We
used the framework MMDetection[10] for all implementations and trainings done in this
study.

III.1.1 Implementation
Any single stage model could have been used for our implementation, we adopted

YOLOv8 which is the most recent version of YOLO, being the fastest and most performing
[47] yet. YOLOv8 is based on the YOLOv5 model and introduces a series of changes, first
it is an anchor-free method, this means it predicts directly the center of an object instead
of the offset from a known anchor box. It also only predicts on bbox for each grid cell and
gets rid of the objectness score, predicting directly the bbox among the possible classes.
It uses both a Feature Pyramid Network (FPN) and a Path Aggregation Network (PAN).
The FPN gradually reduces the spatial resolution of the input image while increasing
the number of feature channels, creating a feature map capable of detecting objects at
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different scales and resolutions. The PAN aggregates features from different levels of the
network through skip connection capturing features at multiples scales and resolutions,
increasing accuracy to detect different sizes and shapes [48]. This architecture is shown
on image III.1.

Figure III.2: Original YOLOv8 architecture. Image by MMDetection Contributors [10]

For the pre-trained CNN backbone backbone we adopt a ResNet50 pre-trained by
CLIP. RN50 has 4 layers instead of 5 like the original’s CSPDarknet, to keep the com-
patibility between the number of channels of each feature map expected by the neck and
channels output by the RN50 backbone we use the large version of YOLOv8. The last
layer of RN50 is not connected to the YOLO architecture that takes the feature maps of
only the first three layers, but it is a part of our OVD model and will be used to generate
the image embeddings to be compared directly to text, as it is explained in section III.2.
Our new architecture with the RN50 backbone can be seen in image III.2, all other parts
of the YOLOv8 model remain unchanged.

Figure III.3: YOLOv8 with pre-trained RN50 backbone.

III.1.2 Training
The training scheme remains the standard training for YOLOv8, including all its “bag

of tricks” (i.e. image augmentation, transformations, optimization scheme, etc), it is an
object detection training in batches.

To adapt YOLOv8 to be a class-agnostic detector we did a pre-processing phase on
the labels of our dataset, we unified the class of all labels, so that all annotations belonged

28 Pietro TANURE ONNIS / XXII Group
Non-confidential report and publishable on Internet



PART III. METHODOLOGY

to the same class, and so the number of classes on YOLOv8’s classification head is nc = 1.
The pipeline of training is the following:

1. Loading:
- Load images of training dataset
- Load annotations of training dataset

2. Preprocessing:
- Unify the class labels of the annotations
- Resize image to 640x640 pixels the expected value expected by YOLOv8 large
- Normalize image considering the values of the mean and standard deviation of
the backbone, in this case the pre-trained encoder of the VLM.

3. Augmentations and transformations:
- Perform mosaic augmentations: This augmentation combine four random
crops of images (fig. III.4), combines classes that may not be seen together in your
training set and changing the number of objects in your images. Mosaic augmenta-
tion was disables during the last 10 epochs of training.
- Perform random affine transformations: These are geometric transformations
that preserves lines and parallelism, it includes rotation, resizing and translation (fig.
III.4).
- Perform mixup[49] augmentation: Generates a weighted combination of ran-
dom image pairs from the training data (fig. III.4), regularizing the neural network
to favor simple linear behavior in-between training examples.
- Perform various operations with 1% probability: MedianBlur, blur, gray-scale,
flip, CLAHE.

Figure III.4: Pre-processing image transformations used in training

4. Train the detector:
- Forward propagation: Pass a batch of images through the network and obtain
predictions of bounding boxes and predicted class
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- Calculate loss: Calculate the losses for the iteration, YOLOv8 uses three losses:
the classification branch uses Binary Cross Entropy (BCE) loss and the regression
branch uses Distribution Focal Loss (DFL) and Complete Intersection over Union
Loss (CIoU). The generalized loss function is defined in equation III.1.

L(θ) = λCIoU

Npos

LCIoU(θ) + λBCE

Npos

LBCE(θ) + λDF L

Npos

LDF L(θ) + ϕ∥θ∥2
2 (III.1)

Where Npos is the total number of cells containing an object, λCIoU = 7.5, λBCE =
0.5 and λDF L = 0.375 are loss weights and θ are the model weights.
- Backpropagation: Propagate error backward through the network actualizing
the weights θ. The optimizer used is Stochastic Gradient Descent (SGD), momen-
tum β = 0.937, weight decay ϕ = 0.0005 and learning rate η = 0.01. The procedure
is given by eq III.2.

V t = βV t−1 + ∇θL(θt−1)
θt = θt−1 − ηV t (III.2)

The model was trained for 600 epochs on MSCOCO dataset.

III.2 YOLO-CLIP
Once we have a class agnostic detector that uses the VLM pre-trained encoder we

can modify it to make it appropriate for Open Vocabulary Object Detection (OVD). The
architecture that we have conceived is to use the bounding boxes proposed by YOLO
and extract the corresponding regions of interests from the last layer of the backbone
feature map. Then we do an attention pooling operation on this feature map (using
an attention head that contains the weights of the pre-trained VLM) to reduce it to an
embedding vector. This vector represents the image in the latent space, and because of
the multimodal pre-training it is aligned with text embeddings from the text encoder.

To do the Region-of-Interest (RoI) extraction we used RoI Align [43], originally
proposed for the Faster-RCNN model. It allows to extract from any region of the feature
map an arbitrarily shaped tensor without loosing information due to quantization, this is
particularly useful for Attention Pooling operations that required a fixed shaped tensor
as input. It does this by performing bilinear interpolation on the feature map to obtain
the cell value of the new tensor. This process is visualized in image III.5.

Figure III.5: RoI Align operation.
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The attention pooling is a single layer of "transformer-style" multi-head QKV attention
with the query conditioned on the global average-pooled representation of the image, it
is initialized with the weights obtained during multi-modal pre-training. The complete
architecture of our model, called YOLO-CLIP is seen on image III.6.

Figure III.6: YOLO-CLIP architecture

As a result, we obtain an open-vocabulary detector, we can calculate the text em-
bedding for anything we want, not necessarily only classes, i.e "dog", "cat", "person", but
adjectives, descriptions or scenes, i.e "a brown dog", "a person with stripped shirt", "a
beautiful beach", etc.

As the possibilities for text expression are endless, a natural discussion into "prompt
optimization" arrives, which looks to find the text prompt that gives best classification
results. That depends on the data and the type of multi-modal pre-training the model
had, in our case we used the CLIP encoders and CLIP was trained on image-caption pairs
gathered from the web, the original paper observed that "a photo of a {label}." was a
good default template and just using it increased CLIP’s accuracy on ImageNet dataset
by 1.3%. On fine-grained datasets, specifying the category also helped, i.e "A photo of
a {label}, a type of pet.". Another technique is to ensemble many different prompts like
"A photo of a {label}." and "A {label}", emsembling together with prompt engineering
can increase the accuracy by almost 5% on ImageNet. [6]. In our case for detection
on MSCOCO dataset we have used a single text prompt for each class: "A photo of a
{label}."

It is important to emphasize that by using a RoI extractor, we’ve made our model a
two-stage detector, since we now have one model responsible for localization of objects in
the scene (class agnostic YOLO) and another model responsible for processing the many
regions and classifying them.
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Part IV

Experimentation

All the experimentation done in this section was made using solely CPU calculations
at my desktop computer at XXII. The computer’s specifications are:

• CPU Intel Xeon E5-2640 v3:
- Nb. de cœurs 8
- Nb. de threads 16
- Fréquence Turbo maxi 3,40 GHz
- Fréquence de la technologie Intel® Turbo Boost 2.0: 3.40 GHz
- Fréquence de base 2,60 GHz
- Cache 20 MB Intel® Smart Cache

• RAM Micron LRDIMM:
- size: 32GiB
- width: 64 bits
- clock: 1866MHz (0.5ns)

IV.1 Class-agnostic Detector
We trained our class agnostic YOLO detector with pre-trained backbone (fig. III.3),

following the procedures on section III.1.2, we’ll reffer to it as YOLO-pretrained. It
was trained on the MSCOCO2017 dataset [50], which is a dataset for object detection
consisting of 80 categories, with 118K training images and 5k test images. We visualize
the test results on image IV.1.

We compare the performance of our model with the original YOLOv8 large model (fig
III.2). The YOLOv8 model was not trained in class agnostic fashion, it was trained to
classify among the COCO classes. To compare it with the class agnostic YOLO-pretrained
we unified the classification score given at the classification head to a single value. In a
sense we are only evaluating the ability of a model to localize an object with a certain
certainty and not to classify which object it is. We observe the results on table IV.3. AP
stands for Average Precision and AR for Average Recall (precision and recall can be seen
on equation IV.1).
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Figure IV.1: Ground-truth x Class agnostic detector inference results.

Precision = TruePositive

TruePositive + FalsePositive
Recall = TruePositive

TruePositive + FalseNegative
(IV.1)

YOLOv8 large YOLO-pretrained
Inference time (s/image) 0.0505 0.0985
AP[0.5:0.95] 0.547 0.358
AP[0.5] 0.75 0.531
AP[0.75] 0.594 0.379
AP[0.5:0.95] small 0.368 0.123
AP[0.5:0.95] medium 0.624 0.445
AP[0.5:0.95] large 0.762 0.657
AR[0.5:0.95] 0.12 0.11
AR[0.5] 0.496 0.374
AR[0.75] 0.686 0.431
AR[0.5:0.95] small 0.516 0.151
AR[0.5:0.95] medium 0.763 0.544
AR[0.5:0.95] large 0.875 0.765

Table IV.1: One-class localization performance of YOLOv8 large and our class agnostic
YOLO with pre-trained backbone.

We observe that changing the backbone to a RN50 made our model take 95% more
time. Our class agnostic model is also not as performing in detecting the objects as the
original YOLOv8 on the MSCOCO. The recall and precision for small objects is the one
that suffers the biggest difference, that is because the RN50 backbone was pretrained on
fixed sized images of the size 224x224, which would be a medium-large sized object for the
YOLO model that takes in images of size 640x640 during training, making the resolution
of the backbone not adapted to smaller objects and not as performing in encoding features
to distinguish it. Also we observe the recall has suffered a drop of performance of 8%
compared to the drop in the precision of 34%. Looking at equations IV.1 this indicates
that our model is making considerably more false positives, but the proportional amount
of false negatives didn’t change as much, this is expected from the class agnostic model
since the objective is to classify any object and not only the 80 COCO classes. We consider
that a high amount of false positives is not necessarily undesirable if it helps identifying
real things on the images. Results can be seen on the Appendix IV.5.
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IV.2 Zero-shot Object Detection
Zero-shot object detection is the task of object detection where no visual training

data is available for some of the target object classes. A benchmark for zero-shot object
detection was proposed by Bansal et al. [51], which presented a split of the MSCOCO
dataset between ’base’ and ’rare’ categories (table IV.5) so that during training the model
would see only the base categories and later be tested to identify both the base and rare
ones. In the context of Open-vocabulary detection it refers to never having seen an
annotated bounding box of the class of interest during training, this was formalized by
Gu et al. [39] which also split the LVIS dataset into base and rare categories (table IV.5).
Gu et al. [39] used a binary mask (that excluded rare classes) on the classification loss of
the detector in order to train it, this way the model would not learn to classify the rare
categories, although the regression head for localization remained unchanged and would
still learn from the rare objects.

COCO LVIS
Number of base/rare categories 48/17 866/337

Table IV.2: Split of the dataset COCO for zero-shot object detection.

YOLO-CLIP model is made by coupling the class agnostic detector with an open
vocabulary classification head as shown in section III.2, for this reason it was never trained
on class labels of its objective classes and can be tested in zero-shot manner. To accelerate
our deployment instead of encoding the text embeddings each time, we pre-calculated the
text embeddings of the classes we wished to detect. We observe the results for test on
COCO dataset on table IV.3.

YOLO-CLIP mAP all (80) mAP base(48) mAP rare (17)
Inference time (s/image) 0.1082 0.108 0.108
AP[0.5:0.95] 0.156 0.143 0.203
AP[0.5] 0.239 0.225 0.309
AP[0.75] 0.165 0.152 0.216
AP[0.5:0.95] small 0.058 0.055 0.910
AP[0.5:0.95] medium 0.179 0.153 0.228
AP[0.5:0.95] large 0.257 0.243 0.286
AR[0.5:0.95] 0.183 0.171 0.240
AR[0.5] 0.318 0.324 0.451
AR[0.75] 0.333 0.344 0.471
AR[0.5:0.95] small 0.099 0.106 0.170
AR[0.5:0.95] medium 0.375 0.374 0.513
AR[0.5:0.95] large 0.543 0.568 0.663

Table IV.3: YOLO-CLIP results on zero-shot object detection on COCO dataset

By subtracting the inference speed of this with our class-agnostic model we can get the
approximate time that the CLIP classification head takes, rougthly 0.1 seconds. Also the
performance on classes considered rare on the dataset is higher than the base categories.
Again we observe that small objects are the ones that suffer the most performance drop.
We provide some visualization for some for the results of our model in figure IV.2 (more

34 Pietro TANURE ONNIS / XXII Group
Non-confidential report and publishable on Internet



PART IV. EXPERIMENTATION

results can be seen in the appendix IV.7). By looking at the results we observe some
tendencies of the model, mainly related to detecting a person: the model is very bad
at detecting people and this is also observed at the RegionCLIP model. Considering
the training used by CLIP this is understandable because the image-caption pairs were
taken from the internet, and the way we normally describe an image that includes people
is by focusing on the activity they are performing or objects they carry, i.e. “Photo
of a surfer on the sea”, “Photo of a man with a backpack”, so the CLIP model would
learn to pay attention to words related to these activities like “skateboard”, “backpack”,
“frisbee”, “tennis racket”, “cell phone” as they provide more discriminative information.
For this reason the “person” category is more often identified with the categories related to
activities and clothes: “skateboard”, “backpack”, “frisbee”, “tennis racket”, “cell phone”
(this is shown on the confusion matrix at the appendix IV.6).

Figure IV.2: YOLO-CLIP inference results.

We can compare these results with the models discussed previously on the literature
as seen in table IV.5 (COCO−R means the COCO dataset without the rare categories).

Model Backbone Pre-training Detector Detector
training

Inference time
(s/image) COCO mAP

CLIP with
GT boxes RN50 CLIP 1 - - - 0.583

RegionCLIP RN50 2 CC3M FasterRCNN COCO 1.01 0.134 5

FVLM RN50 4 - FasterRCNN LVIS - 0.325
UniDetector RN50 3 - FasterRCNN COCO−R 0.323 0.307 5

UniDetector RN50 3 - FasterRCNN
COCO−R

O365
OpenImages

0.323 0.512

YOLOCLIP RN50 4 - YOLO COCO−R 0.108 0.156

Table IV.4: Model comparison. 1: data for the original CLIP model was never made
available. 2: RegionCLIP distilled knowledge from the original CLIP encoder and also
used CC3M for pre-training. 3: Unidetector uses the pre-trained backbone of RegionCLIP.
4: FVLM and YOLOCLIP used CLIP’s pretrained backbone. 5: These results are not
mentioned in the original paper but are direct results from running the provided codes
using the provided checkpoints.

We observe that our model is by far the fastest among these and more performing
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than the RegionCLIP trained on COCO even without performing grounding, having used
CLIP backbone directly. Also, if we ask CLIP to classify the ground truth boxes, it ob-
tains a much better performance than all the current OVD detectors on the literature,
demonstrating that there’s still much to be improved by increasing the detector’s perfor-
mance, this result is even better by giving RegionCLIP’s encoder ground truth boxes to
classify [7].

IV.3 One-shot Object Detection
Another test we made was one-shot object detection, detecting an object that the

model has seen once before. For this we didn’t use the text embeddings, what we did was
to encode an image example of what we are looking for and compare the RoI embeddings to
this encoded example on the embedding space directly. This is similar to do classification
based on kNN, we make classification directly on the latent space of the image encoder,
associating close instances to the same class. This was inspired by the fact that CLIP
has been shown to have a well distinguished latent space, capable of separating instances
from different classes (fig. IV.3). We tested the CLIP backbone on the task of image
classification using ImageNet images from 48 classes that are common between ImageNet
and COCO, obtained an accuracy of 82.8%.

Figure IV.3: t-SNE visualization on image embeddings of CLIP. A different color and
symbol is used for class of a total of 48 classes from COCO.

We have tested this approach for classification on the COCO dataset, since there
are classes in COCO that are not in ImageNet we manually constructed an example
dataset containing 1 image of each class, encoded each image example and during inference
assigned each bbox to the class it was closest to in the embedding space. This would be
like performing kNN classification for k = 1 and also 1 single instance for each class on
the embedding space, a very challenging task. The results are given on table IV.5, the
model’s performance droped by 33% compared to the zero-shot setting.
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YOLO-CLIP
Inference time (s/image) 0.1082
AP[0.5:0.95] 0.102
AP[0.5] 0.149
AP[0.75] 0.108
AP[0.5:0.95] small 0.041
AP[0.5:0.95] medium 0.125
AP[0.5:0.95] large 0.155
AR[0.5:0.95] 0.128
AR[0.5] 0.218
AR[0.75] 0.229
AR[0.5:0.95] small 0.077
AR[0.5:0.95] medium 0.267
AR[0.5:0.95] large 0.343

Table IV.5: "One-shot" object detection on COCO dataset

These results are not necessarily good compared to the Open-vocabulary setting of
comparing text to image, mainly because there’s only one image example for each class.
But what this approach excel is in image search, when we have an image example that
is very close to the ones we are looking for in the image. We have made a test for object
detection using a coke can as the image query of reference for the search as can be seen
on image IV.4a, the model was tasked with predicting among the 80 COCO classes + an
extra ’coke’ class using only a single image example for each category. On image IV.4b we
show only the n objects detected that are the closest to their respective category, we see
that all of them consist of the image query (in this case fire) and not the other categories
like ’truck’ or ’oven’, meaning that the model has a higher certainty of detecting objects
when provided accurate image examples of more specific objects.

(a) One-shot coke image search. We used an image query in
color and in black and white obtaining equally good results.

(b) One-shot fire search. We show the n = 1 objects closest
to their respective image query.

Figure IV.4: One-shot image search from image query and text query.
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We can see that given a good image example the model can correctly identify the object
on the image and even give less false positives than text query search. Also when using
image queries the model is less likely to wrongly assign labels to intersecting bounding
boxes that actually contain different objects.

IV.4 Discussion
The class agnostic model with pretrained encoder has shown to have good localization

performance compared to training a YOLOv8 large normally on the COCO dataset. The
precision suffered a bigger drop than recall, meaning our model is making proportionally
more false positives than false negatives, this is not necessarily a bad thing as the objective
in deployment is making a model capable of detecting anomalies and many other categories
not present in COCO dataset. Smaller objects have worse detection performance than
medium and larger ones, this is common to other OVD models like RegionCLIP and
UniDetector as they use RN50 backbone that takes in during pre-training middle-large
size images.

YOLOCLIP model has shown to be by far the fastest model on the literature for OVD,
3x times faster than UniDetector the fastest one yet and 10x faster than RegionCLIP.
In terms of performance it is not as performing as the current models in the literature
like FVLM and UniDetector, but it is superior to RegionCLIP (2021) while having no
need for grounding pre-training. A simple way to make it immediately more performing
would be to do calibration as proposed by UniDetector. When looking at the results from
UniDetector (table IV.5), which is the current SOTA using the RN50 backbone, we see
that the performance of our model could be much improved training on different datasets.

Analyzing YOLO-CLIP’s results on zero-shot open-vocabulary recognition IV.3 we see
that the model has considerably higher performance on the rare categories than on base
categories, showing that combining both class-agnostic localization and a frozen vision-
language model can be beneficial for anomaly detection. We remember that combining
both of these techniques is novel to the literature as UniDetector used a class agnostic
RPN training but didn’t freeze the backbone and the contrary can be said about F-VLM.

From table IV.5 we observe that training a better detector is crucial to increase per-
formance, as given the GT boxes the CLIP model can obtain much better classification
results than even current SOTA. The backbone used for our model was pre-trained to do
image-caption alignment, this is not the same task performed by an OVD which requires
to align specific regions of the image with text. Using a backbone trained on region-text
alignment or grounding might also provide superior performance.

For these reasons we tried to train our class-agnostic detector using RegionCLIP’s
pre-trained encoder on the LVIS dataset that contains much more classes and annota-
tions. During the class agnostic pre-training we observed repeated errors by CUDA GPU
calculations, specifically in the loss calculation part of the code responsible for matching
each proposed bbox to a specific ground truth box. That is because LVIS has much more
annotations per image and also because the class-agnostic training requires us to unify all
the annotation’s class label, so the matching algorithm can’t use class prediction informa-
tion to narrow down the search during the matching between GT bboxes and proposed
bboxes. This caused the programme to crash repeatedly either for lack of GPU memory
available or for the GPU cores becoming unsinchronized with each other.

We observed by looking at the predicted results that YOLO-CLIP has a limitation
which comes from the CLIP model itself. If the RoI of object 1 is contained inside the RoI
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of object 2, the model might predict object 1 from object’s 2 bbox. Since CLIP is used
to looking at a whole image and understanding it in context it might find some smaller
detail more relevant than the bigger object. This is however less likely to happen if we do
one-shot detection using an image query instead of a text query.

Also a particularly interesting application has been studied through one-shot object
detection, where we classify objects from a given image prompt. Because of the fact
the pre-trained latent space of the CLIP model is well-structured and adapted to image
classification, classification can be done directly on it by nearest-neighbors. This has been
shown to provide good results if the image query is close to the object of interest. This
approach allows YOLO-CLIP to not only do search from text but from an image example
as well.
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Conclusion

We now return to the context and prospectives defined on the beginning of this study
(section I). Two main prospectives for this internship: reducing the cost of collecting and
labeling data of rare classes and performing real-time anomaly detection. We consider to
have answered to both, our YOLO-CLIP model is capable of real-time object detection
and also has shown promissing results on both text-to-image and image-to-image search.

To address these challenges we set out first to explore the current SOTA on the field
of Out-Of-Distribution (OOD) and then on the field of Vision-Language Models (VLM),
finally choosing to adress it through Open Vocabulary Object Detection (OVD).

On a personal note the internship was incredibly fruitful as I explored many relevant
fields on computer vision, obtained a very solid base on software architecture design, on
different machine learning and data analysis frameworks, as well as software development
tools like Docker, VScode, GitHub.

IV.4.1 Contributions
We cite our main contribution as proposing for the first time in the literature a novel

model adapted for real-time OVD. Our approach uses a frozen pre-trained backbone,
maintaining the relevant features learned during training making it more adapted for
detecting rare classes. We provide a regime to train a single stage detector to do class-
agnostic object detection making it suitable for the OVD setting, until now OVD models in
the literature all have used a two stage detector architecture. As secondary contributions
we cite doing a comprehensive overview of the settings and approaches on the fields of
Out-Of-Distribution (OOD), Vision-Language Models (VLM) as well as performing a
SOTA on the field of Open Vocabulary Object Detection (OVD).

IV.4.2 Future works
A lot of work can be done to improve the performance and generality of our approach.

Training the model on bigger datasets like LVIS and Object365, either separetely or jointly
like proposed on the UniDetector paper [9]. Also using a backbone trained on the task of
region-text alignment instead of image-text alignment. A simple calibration wasn’t done
for lack of time but could have increased the performance of our model.

A totally different and exciting approach would be to use transformers, currently there
transformer architectures capable of real-time object detection [52]. Although there aren’t
transformer models on these architectures pre-trained through contrastive learning and
consequently that could be used for OVD, approaches like distillation could allow one to
transfer the knowledge from one transformer incapable or real-time object detection to
another one that is.
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Appendix

IV.4.3 Class-agnostic Detector

Figure IV.5: Ground-truth vs Class-agnostic detection. For visualization the annotation
labels were unified to 0, which made every object to be exhibited as the first class ’person’.
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Appendix

IV.4.4 Zero-shot Object Detection

Figure IV.6: Confusion matrix of YOLO-CLIP model. Better seen digitally.
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Figure IV.7: Ground-truth vs Zero-shot object detection with YOLO-CLIP.
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Appendix

Figure IV.8: YOLO-CLIP zero-shot detection of all COCO categories + ’fire’ category.

Figure IV.9: YOLO-CLIP zero-shot detection of all COCO categories + ’fire’ category
but only the n=2 objects classifications with highest certainty
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Glossary

AD Anomaly Detection

CNN Convolutional Neural Network

DNN Deep Neural Network

FPN Feature Pyramid Network

GCD Generalized Category Discovery

ID In-Distribution

ML Machine Learning

NCD Novel Category Discovery

ND Novelty Detection

OCC One-Class Classification

OD Outlier Detection

OOD Out-Of-Distribution

OSR Open-Set Recognition

OVD Open Vocabulary Object Detection

PAN Path Aggregation Network

RNN Recurrent Neural Network

RoI Region of Interest

RPN Region Proposal Network

VLM Vision-Language Models
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